01st & 02st September 2021 Grande Real Villa Itália Hotel Cascais, Portugal ## PRIVATE WEALTH EXCELLENCE FORUM 2021 Hosted by: ## **Top Machine Learning Algorithms for Predictions** | Name | Туре | Description | Advantages | Disadvantages | |------------------------|----------|--|---|--| | Linear
Regression | | -The best fit line through
all data points | -Easy to understand -you can clearly see what the biggest drivers odf the model are. | -sometimes to simple
to capture cpmöex
relationships between
variables,
-Tendency für the
model to overfit. | | Logistic
Regression | 5 | -The adoption for linear
regression to problembs
of classification | -Easy to understand | -sometimes to simple
to capture cpmöex
relationships between
variables,
-Tendency für the
model to overfit. | | Decision
Tree | Y | -A graph that uses
branching method to
match all possible
outcomes of a decision | -Easy to understand and implement. | -Not often use of ist
own for prediction
because it's also often
too simple and not
powerful enough for
complex data. | | Random
Forest | X | - Takes the average of
many decision trees.
Each tree is weaker than
the full decision tree, but
combining them we get
better overall
performance. | -A sort of "wisdom of
the crowd", Tend to
result in very high
quality results.
-Fast to train | -Can be slow to output
predictions relative to
other algorithms.
-Not easy to
understand predictions. | | Gradient
Boosting | Y | -Uses even weaker
decision trees that
increasingly focused on
"hard examples" | -High-performing | -A small change in the
future set or training
set can create radical
changes in the model.
-Not easy to
understand predictions | | Neural
Networks | \times | -Mimics the behaviour of
the brain. NNs are
interconnected Neurons
that pass messages to
each other. Deep
Learning uses severak
layers of NNs to put one
after the other. | -Can handle extremely
complex tasks. No
other alsgorithm comes
close in image
recognition. | -very very slow to train.
Because they have so
many layers. Require a
lot of power.
-Almost impossible to
understand predictions. | ## A mostly complete chart of ## **MACHINE LEARNING** Types of learning What Unsupervised Reinforcement Self - driving car Supervised Chatbot regression Real world applications Why Churn prediction Movie Classification Recommendation Cencer diagnosis Data cleadnsing /exploration/preparation **Process of** Feature engineering "applied" ML Outlier treatment Join Communities Missing Value treatment Learn From experts data modeling Participate Kaggle Competition Model Validation Listen to podcast **Practice** Model evaluation Subscribe newsletters Model deployment Learn Toolbo Multivariate Calculus Python Algorithm & Complexity Theory Keras mlr Optimization Tensorflow dplyr Probability Theory & Statistics Scikit - Learn caret Linear algebra Pandas Numpy FINISH!